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ABSTRACT 

A general numerical integration formula is presented that generates many of the commonly used one-dimensional 
finite-difference schemes. A number of these schemes are tested on a simple wave equation; three implicit and three 
explicit are chosen for further analysis with a nonlinear set of equations with known solutions. A seventh method of 
the implicit type not requiring iteration is also tested. A transformation is developed that allows the removal of 
linear terms from the nonlinear equations, thereby avoiding truncation of the linear terms. The results of the analysis 
show that energy components may have large errors when the total energy shows essentially none, and phase errors 
may be quite serious without indication from linear analysis. By treating the uncoupled linear terms exactly (no 
truncation), significant improvement in the numerical solutions ensues. The multilevel implicit schemes give superior 
results and are to be recommended if computing time is not a criterion. Great care must be taken in interpreting the 
linear stability criterion. The critical truncation increment should be considerably reduced to  avbid significant 
truncation errors, especially for long time integrations. 

1. INTRODUCTION 

The problems of computational stability and truncation 
errors are by no means recent in origin. Indeed, few 
physical problems are so simple as to  yield mathematical 
representations that lend themselves to analytic solutions. 
More often than not, the appropriate equations are 
nonlinear and must be solved numerically with little 
insight into the exact solutions. One is generally con- 
fronted with partial differential equations to  further 
complicate clarification of the errors arising from numerical 
computation. 

Despite these seemingly overwhelming obstacles, sig- 
nificant progress in studies of computational stability have 
been made as exemplified by the work of Richtmyer 
(1957). The traditional approach to such studies is to 
linearize the nonlinear equations and then compare the 
exact solutions of the linear system to the solution of the 
corresponding finite-difference equations. For different 
truncation procedures, the approximations may be eval- 
uated in terms of the true solution. For initial value 
problems where the linearizing assumption may not be 
valid for all time, only the criterion of computational 
stability has utility. Moreover, since finite-difference 
operations must generally be applied in both space and 
time, highly involved relationships between the truncation 
intervals evolve. 

With reference to  problems concerning atmospheric 
flow, the feasibility of converting the appropriate non- 
linear partial differential equations to a finite set of 
ordinary nonlinear first-order differential equations in 
time (termed “spectral” equations) has been established. 
Such equations are generated by assuming the space 
dependence to be given by a series of known polynomials 

1 Present a5liation, Canada Center for Inland Waters, Department of Energy, 
Mines, and Resources, Burlington, Ontario. 

and solving for the time dependent coefficients through 
integration over the entire space domain. The technique 
seems to have been applied first by Silberman (1954) 
and discussed in detail by Platzman (1960). On the 
assumption that the series truncation does not create 
serious errors (a question not yet investigated in detail) 
or that the finite set of equations is an exact representa- 
tion of the physical system, one is left with the con- 
siderably simpler problem of determining time truncation 
alone. 

The investigation of ordinary differential equations by 
numerical methods has also not been neglected; see, for 
example, Henrici (1962), Hildebrand (1956), or Milne 
(1949). However, if wave-type solutions exist, error esti- 
mates of linear equations based on Taylor expansions 
may be cast into doubt, and investigations of the type 
carried out by Kurihara (1965) are necessary. Little is 
known about truncation errors of initial value problems 
involving nonlinear equations. Fortunately, there exist 
some nonlinear systems of spectral equations that have 
analytic solutions. Such systems were first used to 
describe atmospheric flow by Lorenz (1960). Clearly, a 
comparison between the finite-diff erence solution of the 
equations of such a system when compared to the analytic 
solution will give information on truncation errors as a 
function of time. Studies with various time-differencing 
schemes have been made on this basis by Lillp (1965) 
and Young (1968). 

A number of finite-differencing schemes have been 
utilized for integrating ordinary differential equations, 
and many are a composite of ingenious techniques that 
have occurred to various scientists and have been proven 
useful. For testing the utility of such schemes, however, 
it seems worthwhile to generate them in some systematic 
fashion, thereby establishing a hierarchy of schemes 
with (we hope) increasing accuracy. One such systematic 
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approach would be to assume that the function to be 
integrated can be represented by a polynomial that is 
exact a t  its known point values. The degree of accuracy 
of such a polynomial will then be established by the num- 
ber of known points utilized. We shall show, moreover, 
that the most popular schemes can be represented by 
this approach. 

The schemes were tested by application to a firsborder 
linear wave equation to avoid the problem of being over- 
whelmed by an unmanageably large number of schemes. 
When a scheme was not able to give good results for this 
equation, we assumed it would not be satisfactory for 
a more complex system of equations. In this way, we were 
able to reduce the number of sqhemes to a manageable 
size. I t  should be noted that, if more points on the time 
axis are used to develop the interpolation polynomial 
than there are orders of derivatives in the differential 
equations, spurious solutions will resulkfrequently 
denoted as “parasitic” solutions-that must be handled 
with great care so as not to obscure the true physical 
soh  tion. 

The remaining schemes (those which gave satisfactory 
results with the wave equation) were then tested on a 
low-order spectral system of the type used by Lilly and 
Young. The system used here however (Baer 1970) has 
the added flexibility of involving both linear and non- 
linear terms in the firsborder system of equations; it 
furthermore allows for time-dependent phase changes 
that were constrained in previous experiments. Since 
linear contributions to differential equations may be 
determined without truncation, their influence has been 
investigated. Of the techniques that proved most accurate, 
multistep methods were included, despite the presence 
of parasitic solutions. Previous calculations suggest that 
integral constraints of the system (say, energy or vor- 
ticity) were adequate indicators of truncation error when 
observed during calculation. This conclusion does not 
seem to be borne out. We shall see that slight phase 
errors will create amplitude errors in the individual 
dependent variables that have a tendency to cancel when 
the integral properties are evaluated. Thus, although the 
integral constraints will yield a good indication of com- 
putational stability (which is also available from h e a r  
theory), truncation errors can only be investigated from 
the detailed behavior of all the dependent variables 
in the system. 

. 

As we have indicated, the spectral equations applicable 
to the atmosphere may be represented quite generally by 
a nonlinear set of first-order differential equations in time 
for which analytic solutions are not available unless the 
set is highly truncated. The dependent variables, which 
me the expansion coefficients of the space-dependent 
polynomials, may be represented by a vector P such that 

*=($J, l < i g q  

and the general set of equations may be wrhten as 

&= F( P, t )  = ( j f )  (1) 

where F is a vector operator and the dot notation 
fies time daerentiation. Suppressing indices, we may also 
state that the scalar equation for any expansion coo%- 
cient will be 

&=w, t ) .  ( W  

Because exact solutions in time are not available for equa- 
tion (1) based on the complicated nature of the functions 

f ,  we may expect to know sk only at  discrete pobts on the 
time axis. For simplicity, let us assume I (and therefore 
E’) known at  equal time increments 

and 
t = to+jAt 

j=O, 9, 2 . . ., T .  

Over a given interval in time, we may establish by an 
interpolation formula a continuous function of time that 
corresponds to the known values at the discrete points 
given by equation (2). If we consider the continuous var- 
iable in time to be given as 

then by Newton’s backward interpolation polynomial 
(see, for example, Eldebrand 1956 or Mihe 1949) 

In equation (4)) the quantity in the second parentheses is 
a binomial coefficient function of s, the superscript on f 
denotes the increment in time a t  which the function should 
be evaluated (from equation 2, the function is known at  
the time T ) ,  and d represents the backward difference 
operator applied k times and has the value 

Although we have specsed that j i s  known at  ~ + 1  points, 
we need not utilize all these values in establishing our 
polynomial (4), and hence we choose merely the last n 
point values. We may determine how the interpolation 
polynomial depends on the discrete point values by 
substituting (5 )  into (4) and noting the following 
identities : 

k=O 5 j = O  k=i= ]=O 5 k=j 

and 



September 1970 F..Baer and T. J. Sirnons 667 

The polynomial becomes 

If we wish to establish the value off a t  the point r+ 1, it 
would be necessary to extrapolate from (6) ; therefore we 
have used the subscript notation E. We could, however, 
aSSume the function known at  ~ + 1  and write an equation 
similar to (6) that would then allow an interpolation to the 
point r+1 and would read 

n 

j = O  
f ( s ) = Z  aIj(s)f’+’-j 

To establish the value of # ( ~ + 1 ) ,  we may now substitute 
either (6) or (7) into (la) and integrate. The integration 
may go over any subinterval of the interpolation poly- 
nomial, but clearly not from a time preceding the point 
7-n. Selecting the integer p ( p l n )  at  which point the 
fipction is known and integrating to T+ 1, we have 

It is interesting to note that use of the extrapolating poly- 
nomial yields an explicit solution for p+’, whereas the 
application of the interpolating polynomial leads to an 
implicit solution because the unknown function fdl still 
exists on the right-hand side of the equation. If we define 
the integrals over S, 

and 
ri (9) 

J - p  %(s)d=azj(P), 

- where the integrals may be evaluated by noting that the 
integrals are factorial polynomials in s that may be con- 
verted to polynomials in s by use of Sterling’s numbers 
of the first kind (Milne 1949), we may express the general 
finitedifference extrapolation formulas as 

explicit, E,, 

p + ’ = p - P + &  ( Y E j f ’ - f  

implicit, I,, 

n 

j = O  

and (10) 

We see from (10) that a wide variety of finitedifference 
integration schemes may be selected in a systematic 

fashion. As we increase p and n, we arrive not only a t  
higher order schemes (more “steps”) with the consequent 
expected increase in accuracy but also additional parasitic 
roots. Most of the standard numerical integration schemes 
fall into the classification given by (10). For example, 
the schemes Eo, and El, are generally associated with 
Adams-Bashforth and Nystrom, respectively (Henrici 
1964); whereas the schemes Io,, 11, are referred to as 
Adams-Moulton and Milne-Simpson, respectively (Hilde- 
brand 1956). The more involved predictor-corrector or 
multicorrector schemes would require a sequence of 
schemes described by (10). 

A number of schemes whose properties will be investi- 
gated are listed in table 1. Certain omissions will be noted. 
The Eo, scheme, which is termed the “Euler forward” 
is always unstable in terms of fictitious amplscation and 
is consequently of no interest. Similarly, the “Euler 
backward” Io,, gives fictitious damping and is therefore 
ignored. Schemes with p = 2  have been shown (Hildebrand 
1956) to yield results not appreciably superior to those for 
p =  1 ; their discussion would thus be redundant. For the 
implicit schemes, the coefficients cy13 (I), Zr5 (3) vanish, 
and consequently the lower order forms II2, Ia4 that require 
as much calculation as II3, 

The schemes described by (10) may be subject to 
Taylor’s series expansion about the point T; for a given 
truncation (p, n), there will be an error of order 
times the same order of time derivative of $ listed in 
table 1. We shall see in the sequel that applying this 
technique to wave-type equations may lead to misleading 
error estimates. 

have been ignored. 

3. LINEAR STABILITY PROPERTIES 

If the schemes listed in table 1 do not show adequate 
stability properties when applied to a linear differential 
equation, we may anticipate their failure with regard to  
nonlinear differential equations. We shall therefore test 
them on the simple linear wave equation 

#= - iplc, (11) 

that could be generated from (10) by linearization and 
neglecting coupling terms. Note that I) is a complex 
variable, but let us assume p to be real. The true solution 
of equation (11) shows only one mode that moves about 
the unit circle in the complex plane with period 2?r/p 
beginning at unity when t=2m?r/p. If we now define 
Coefficients - - 

aI, j+l, azv j+ l=O for j=n 
aEj, agj=O for j = - l ,  

CYj= { - - 

we may write both the implicit and explicit finite-difference 
schemes (10) after substitution of (11) for the values of the 
derivatives a t  the known discrete points by the single 
relation 

R 

(1 + ioL- 1pAt) $J+’ = p-”- ipAt a#-’. (12) 
j=o 

400-552 0 - 7 0  - 6 
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TABLE I.-Values of the coegieients a r , ( p ) ,  a ~ i ( p )  for di f frent  inteyratim s c h a e i  E,,, I,,, their names (if known), and the truncation error 
based on Taylor’s series analysis 

The solutions to  equation (12) may be determined in a 
number of ways, but they must all satisfy the characteristic 
equation 

(1 + ior- 1 pAt)Xn+l = X n  --p- ipAt 2 ajXn -j (1 3) 

where the roots of (13) represent the solutions of (12). 
Since we have specified p I n ,  there will be n+ 1 solutions 
to ( 1 2 )  , only one of which corresponds to the real “physi- 
cal” mode. The computational or parasitic modes (n of 
them) are distributed as follows a t  At=O; n-p roots begin 
a t  the origin, and p + l  roots are distributed equally 
about the unit circle with the physical mode a t  X = l .  As 
At is increased from zero, the roots will change from 
their initial points. 

If the first root, A,, represents the “computed physical 
mode,” we may compare it with the true solution. So long 
as its amplitude remains near unity, there will be no 
spurious damping or amplification. However, its phase, 
say Bo, must also remain near the true phase for accuracy; 
that is, we should observe that -Oo/pAt remains close to 
unity. The remaining n solutions are parasitic and enter 
only to disturb the physical solution. So long as their 
amplitudes remain less than unity (that is, within the 
unit circle), they will be damped. If they go outside the 
unit circle, they will cause amplification and may be 
classified as “unstable” solutions. If they remain on the 
unit circle, by suitable choice of initial conditions their 
effects can be made innocuous. 

All the schemes listed in table 1 have been tested on 
equation ( 1 1 ) .  Their characteristic equations may be 
easily determined by substitution of the tabular coeffi- 
cients together with the limits (p, n) into (13). The roots 
of these characteristic equations have been determined for 
various values of pat, and the amplitudes of all modes for 
each scheme have been plotted against pat (abscissa) in 
figure 1. Pursuant to the previous discussion, wherever a 
mode exceeds unity on the ordinate, it  will yield an 
unstable solution. Clearly, the best schemes will be those 
for which all roots remain stable for the largest value of 
pat. 

j = O  

We may be considerably more precise about, the be- 
havior of these schemes by investigating the computed 
physical mode in more detail-both its amplitude and 
phase. On figure 2,  we have plotted for all schemes the 
amplitude of the computed physical mode (and amplitudes 
of parasitic modes when they are within the ordinate 
scale) on the upper graph and the ratio -Bo/pAt on the 
lower graph against pAt on the abscissa. Here, we may 
isolate the best schemes. Whereas from figure 1 we might 
have thought that scheme Iol was best because it is stable 
for all values of At, we see from figure 2 that this scheme 
(trapezoidal) has serious phase errors for reasonable values 
of pAt. 

We have selected, based on figure 2, three schemes in 
the explicit group and three in the implicit group for further 
study. Choosing p A t S 0 . 4 ,  we see that ]E031 ]El1, and Ea3 
are the best; whereas for the implicit schemes, the obvious 
choices are IolJ 113, and L5. Scheme I,, was selected because 
of the strong stability property of its amplitude and also 
because of its general popularity, although its phase 
characteristics are less desirable. 

An interesting sidelight to the selection of suitable 
finite-difference schemes is exemplified by figure 3. Sup- 
pose one would like a scheme no greater than two-step 
for which the coefficients could be varied such that the 
most favorable properties may be chosen. Let the scheme 
be represented in terms of the arbitrary coefficients (a, P) 

(14) p+1 =p-1 +At(&-’+ a$+ ,j,r+l> 
2ff+/3=2 

and test it on the equation $=-ivJ/. Figure 3 shows for 
various combinations of a, /3 that the phase properties in 
the stable range (where both the real physical and the 
parasitic roots have amplitude unity) are effectively 
bounded by the error curves for the leapfrog (L-E,,) on 
the one hand and the trapezoidal (T--Io1) on the other. 
The Milne scheme (M-I,,) is undoubtedly one of the 
best that satisfies the criteria of ( 1 4 ) .  
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FIGURE 1.-Amplitudes of the roots of the simple linear wave equa- 
tion $= i p +  for various truncation schemes plotted against p A t  on 
the abscissa. 

4. MULTICOMPONENT SYSTEM 
The coupled set of nonlinear first-order differential 

equations on which the six schemes that survived the 
linear analysis of the last section will be tested is part of 
the group of low-order spectral systems which were sytem- 
atically developed by Platzman (1962) for the barotropic 
vorticity equation, but which also have applicability for 
baroclinic problems. The system under consideration 
involves an arbitrary zonal flow interacting with a single 
planetary wave composed of two complex components 
(describing its latitudinal variability) in a rotating at- 
mosphere with spherical geometry. Details of this system 
including the exact solutions (elliptic functions) have 
been presented by Baer (1970). If the zonal coefficients 
(real) are denoted as #,(t) where y=2m+l, m l M ,  and 
the complex wave coefficients are described by the terms 
#&), #&), the differential equation for the zonal terms 
may be written 

&=2a, Im 

The zonal coefficients can be solved in terms of one 
coefficient # n  by integration of the above equation. The 
time relationship thus developed between the zonal co- 
efficients is unaltered if the integration is Derformed bv 

€ 1  I E 33 

I ol, , - ,102, , , m, , , 
'IT; l':[p-, ll:ly 
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FIGURE 2.-Amplitude (upper) and phase (lower) of the physical 
root of the truncated linear wave equation plotted against pdt. 
The phase is given proportional to  pAt. 

numerical means, whereby we find that #y  = (u,/a,& + 
sy.  The system to be integrated therefore involves only 
three variables, #%, and #a and is 

P=(;;), 

where the tilde denotes transposition. The physical sig- 
nificance of the constants that deDend on sDectrum 
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Before proceeding to a discussion of the numerical cal- 
culations of the different schemes, let us consider the 
linearized coupled equations and the finite-diff erence solu- 
tion to these equations. The linearization of equations - (16) 
may be accomplished by assuming that $n+$n= constant 
where it multiplies either or $ B  in the second equation 
of (16). The linearized equation may thus be expressed as 

where the elements of E can be established from the defi- 
nitions given in (16). The roots of are listed in table 2 
together with the form of the modal matrix where 

- -- E= Skis - '  

and 
be written formally as 

is the root matrix of E .  The solution to (22) may 

(23) 
- - - -  

P( t )  = e G t q ( t  =0) = SeiAtS-'9( t =0) I 

If the roots of are pure imaginary, no physical ampli- 
fication will take place, and computational stability can 
be easily defined. The physical stability condition implied 
in has been discussed by Baer (1970) and need not be 
repeated here. We shall concern ourselves with physically 
stable situations. 

Let us now apply the leapfrog scheme to (22) with the 
option that some of the linear terms may be extracted as 
we have done in (18). The appropriate form of (22), using 
the transformation (17), becomes 

Here, G may take on any of the three values 0, AI, or A. 
Since we wish to compare the solutions of the second of 
(24) with (23)' me return (24) to the variable P. Noting 
now that we may establish the roots of G and write a root 
matrix A, 

G = SiAS-I (25) 

where the roots and the modal matrix for different 
matrices G are listed in table 2, we find for (24) using 
(25) and (17) 

Since the elements of are a linear combination of the 
elements of 9, they will have the same solutions (roots). 
By the usual method of establishing an amplification 
matrix for multistep equations (Richtmyer 1957), we 
define the vector # as 

E I + A L J . l ,  

TABLE 2.-Values of the roots and modal matrices forvaTious fonns of G 

G I  { I  A i  I 9 

and we get the solution to (26) in the form 

where I is the unit matrix. The root equation for the 
amplification matrix in (27) is given as 

that is, in general, a fourth-order equation in the roots. 
Two of these roots are physically real; the other two are 
parasitic. The real roots should be compared with the 
roots of the exact solution, e irAf .  So long as At remains 
within the limits of computational stability, the roots 
will have amplitude of unity, and we may therefore 
consider only the phase angles. Thus if the roots of (28) are 

3 -  . - e%, (29) 

we may compare the phase angles for the finite-difference 
solution to those of the exact solution by the ratio Oxj/vjAt. 
These ratios are shown for each of the approximations 
G=O, A,, and A on figure 4 plotted against the non- 
dimensional time unit At where time has been nondimen- 
sionalized by the earth's rotation rate. The data used in 
determining the roots was taken from case CA and is 
given in table 3. The values of the frequencies Y , , ~  are 
v1=0.310 and v2=0.042. We shall have occasion to com- 
pare these values to  the exact frequencies of the nonlinear 
solution in the next section. 

The phase errors for the approximation G=O may be 
readily determined since (28) reduces to the equation 

XZ-2iAtvJ- 1=0 

from which we see that the phase angles O x i  (equation 29) 
are given by 

&=sin-' (v,At) , 

a result identical to  the one arrived at  in section 3 for 
uncoupled systems. The stability criterion and phase 
error at the stability point are 

Returning to the discussion of figure 4, we see that 
removal of the uncoupled terms (G=A,) leads to a much 
more stable calculation with considerably lower errors in 
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FIGURE 4.-Phase errors for the coupled system using the leapfrog 
scheme and the three linear truncation methods TL, TC, and EL. 

phase. Total truncation (G=O) is clearly the worst case, 
whereas including an exact treatment of the coupling 
terms in A, does not improve the stability or phase errors; 
in fact, the extraction of more exact information in this 
case creates larger truncation errors. It should be noted 
that these results refer to a particular set of initial condi- 
tions and are subject to change for different conditions. 
However, we may conclude with some coddence that 
the exact treatment of uncoupled linear terms will yield 
solutions to the nonlinear equations with less error for 
a given truncation element At. We shall not consider the 
linearized equations for the other truncation schemes 
but proceed directly to the numerical calculation of the 
nonlinear equations. 

UMERBCAL CALCULATIONS 
Three different sets of initial conditions were used to 

test the truncation schemes; they are listed in table 3 
and are denoted respectively as cases CA, CB, and C@. 
Since the exact solutions to (16) are known, any variable 
determined from a numerical integration will be repre- 
sented normalized by its exact value. For each case of 
initial data, the three methods (TL, a@, and EL) for 
dealing with the linear terms were applied, and three 
different time increments (At) were used; the scales of the 
time increments were determined from the characteristic 
frequencies of the cases. All seven truncation schemes 
discussed in section 3 as having satisfactory linear pro- 
perties were tested and are listed in table 4. 

Let us now concentrate our attentions on the features 
of case @A that was integrated numerically in excess of 

TABLE 3.-Numerical values of the variables i n  three different sets of 
conditions used in this study 

Condants in eq. (16) 
an 
P= 
1 8  
h-8 
h h  
0.. 
#a8 
PO. 
180 

Initial values ~, ,  
c. 
$8 

Solutions nfeq .  (16) 
Energy variations zonal 

(normalized) a-wave 
#-ware 

Energy exchange period (days) 
Wave periods observed in exact solu- 

Wave frequencies from linearlzed 

Corresponding wave periods (days) 

tions (days) 

equations: Y I , ~  

Case CA 
-0.09788005 
- .26691770 
- .03839707 
- .09899117 
- .07127364 
- .08220212 
- .03050807 
- .12767626 
- .0139ti861 
-0.60497847 

.63421748 
- .25891820 
0.374-0.244 
.402-+ .613 
.223-+ .143 

3.452 
3.24 
52. 
0.3097 
.0421 
3.23 
23.8 

Case CB 
-0.69019528 

.21502294 
,86136911 
.27432320 
.23888073 
.19180456 
.43151307 

- .41340017 
.34083072 
0.80465985 
.42852365 
.10713091 

0.7Mko.271 
.245-+0.627 
. 0 5 k  .lo2 

1.470 
1.29 

-0.6407 - ,1040 
1.56 
9.6 

10.3 

Case CC 
-4.8903939 
0.79837156 
.38763314 
1.1105865 
0.59288305 

-1.0310522 
7.2731965 
4.1460202 
3.2491569 

-0.28630513 
.lo114551 
.07680246 

0.2oO-ro. ,292 
.464-+ .076 
.336-+ .a2 

0.608 
0.627 

-1.903 
0.0404 
.526 

- 

24.75 

51 days. Since this case has an exact nonlinear exchange 
period of 3.452 days, the integration period should be 
long enough to highlight important errors. The exact 
frequencies-and there are two because two wave com- 
ponents, $a, $S exist-are vl=O.309, v2=0.0192. The 
first of the two frequencies calculated by linear theory 
(section 4) compares remarkably well with the first 
exact frequency, but the second is more than twice as 
large. However, because of the difference in magnitude 
of these frequencies, the first (larger) frequency will 
essentially determine the stability criterion. Using the 
first frequency and the linear (uncoupled) solutions for 
the different schemes developed in section 3, we list in 
table 4 the stability condition At,,,, which the linear 
theory would indicate. 

A common procedure for establishing stability and 
truncation errors is to investigate the development in 
time of some integral property of the system-generally 
conservative-as was done by both Li ly  (1965) and 
Young (1968). For simple atmospheric flow problems, 
energy is the logical choice, although Young also in- 
cluded the vorticity. To  indicate the behavior of the 
total energy of our solution (case CA) with time, we have 
prepared table 4 in which we describe the total energy 
(conserved in the exact solution) for the different trunca- 
tion schemes, different truncation intervals At=2.07, 
4.14, or 8.28 hr, and different treatment of the linear 
terms. The energies have been listed after 51.77 days 
unless an oscillation occurs, in which case its range is 
tabulated. As indicated above, we have also listed the 
stability condition based on linear theory. 

Unquestionably, the stability properties are well 
described by the total energy and correspond to those 
anticipated from linear theory. Where damping is pre- 
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TABLE 4.-Total energy normalized by the exact value for case CA after 51.77 days for seven schemes, three different time steps, and different 
treatment of linear terms together with the linear stability criterion. I n  case of oscillation, the range is tabulated. 

Scheme 
stability &=(hours)- 

EII 

At212 hr _ _ _ _ _  _ _ _ _ _ _  _.___ _ _ _ _ _  ~ __. 
E 03 

At55 hr 

E33 
At15 hr 

IM 
A t l m  

Io1 
At5 m 

113 
a t221  hr 
13s 

At516 hr 

2.07 
TL 
4. 14 8.28 

0.999 0.991 0.934 

1.001 1.006 1.098 

0.993 0.822 Overflow 
(11 days) 

1. OOO 0.999 Overflow 
1.002 (8 days) 

1. OOO 1. ooo 0.999 
1.001 1.005 

1. OOO 1. ooo 0.999 
1.001 

1. OOO 1. OOO 0.999 
1.003 

TC 
2.07 4.14 8.28 

._._______...._ 0.998 

._._____...____ 1.001 

1. ooo 0.989 
.991 

0.998 0.988 
1.002 1.013 

1. MH) 1. ooo 
1.002 

1. OOO 1. OOO 
1.001 

1. OM) 1. OOO 

1. ooo 1. OOO 

1. ooo 
0.988 

1. cO6 

0.855 
.857 

ovemow 
(32 days) 

1. ooo 
1.007 
0.999 
1.003 
1. OM) 

0.999 
1. ooo 

dicted, as in scheme EO3, the tabular values are in agree- 
ment. Where parasitic oscillations are anticipated (Ell), 
they appear in the table. Further expected results show 
that the solutions deteriorate for increased At and that 
implicit schemes are generally superior (for given At) 
than explicit ones. A further observation, not previously 
investigated, is the improvement of the solution from TL 

. to TC; that is, when the uncoupled linear terms are treated 
exactly. If, however, one proceeds to treat all linear terms 
exactly (EL), the results appear somewhat less stable, 
as expected from the linear analysis (section 4) .  

The above information is indeed valuable; however, it 
must be emphasized that the behavior of the total energy 
with time is not necessarily an indicator of the behavior 
of the detailed character ofthe solution. As we shall see, the 
individual amplitudes of the wave components may 
be seriously in error with no indication from the total 
energy. Moreover, the phase angles and wave velocities 
of the components from the truncated calculations may 
have no relation to the true solution, although the total 
energy is well conserved. To establish this fact, among 
others, we shall proceed to a detailed discussion of the 
calculations. 

The component amplitudes that make up the total 
energy in our equations may be represented when we 
describe the truncated value normalized by the exact 
value from equations (15) as 

A energy = 2ca$,& (truncated)/2ca$& (exact), 
B energy= 2c&3@ (truncated)/2ce~,& (exact), 
2 energy= Zc& (truncated)/Zc& (exact), 

and (30) 
T energy E to tal energy. 

The time variation of the three energy components pre- 
sented in (30) have been plotted for At=4.14 hr for all 
seven schemes listed in table 4 for both the TL and TC 

2. 07 
EL 
4. 14 8.28 

0.999 

1.003 

0.999 

0.878 
1.409 

0.999 
1. OOO 
0.999 
1.000 
1. ooo 

1. OOO 

0.968 

1.045 

0.979 
.980 

Overflow 
(a days) 

0.995 
1. OOO 
0.998 
1.001 
1. m 

1. OOO 

0.889 

81.881 

0.801 
.812 

0.982 
1. OOO 
0.999 
1.011 
0.999 
1. OOO 
0.999 
1.001 

conditions based on data from case CA in figure 5. We 
have selected to discuss the TL condition because it is by 
far in most common usage and the TC condition for 
comparison. From a superficial view of figure 5, one is 
immediately impressed with the sizable errors in some of 
the schemes, a fact not established from table 3. These 
errors have a regular period that is given by the first 
(largest) frequency, v1 =0.309. One must conclude, there- 
fore, that the energy components cancel their errors on 
summation. A further observation is the remarkable 
improvement in the calculations (reduction in error) by 
use of the TC condition. Although this condition has 
been in computational use with higher order systems for 
some time (Baer 1964), its virtues had not been investi- 
gated in any detail. 

Of the explicit schemes tested, E33 is by far the best 
with regard to truncation, showing almost no errors 
during the entire integration period for Atcx4 hr. How- 
ever, in terms of its utility as a computation scheme, we 
must refer back to table 4 that elucidates its limited sta- 
bility region (At55 hr). Scheme EO3 shows errors in 
excess of 50 percent in the energy components and de- 
scribes the anticipated damping with time, but only in the 
a wave. The leapfrog scheme also shows large error ex- 
cursions, but they are cut back dramatically by the TC 
condition. 

Although table 4 indicates no significant errors for the 
implicit schemes, figure 5 clearly does not corroborate 
this interpretation. Scheme Io* has errors as large as 50 
percent in the components for the TL condition; they are, 
however, almost completely eliminated when the TC 
method is applied. An unfortunate and unexpected result 
of the tests is the poor quality of the I M  computation. 
While the TL results are not available, the TC results 
suggest that this scheme is inferior to  the others described 
on figure 5 (another observation not anticipated from the 
total energy information of table 4).  Schemes II3 and 135 
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FIGURE L-Energy in the zonal and cx and p waves as a function of time in days (abscissa) normalized by their exact values for the seven 
schemes that had favorable linear properties. Solid curves represent TL condition and dotted curves are for TC, both for At=4  hr. 

have been plotted on the same chart since neither has any 
measurable error in the energy components over the total 
integration period for At=4 hr. They are clearly superior 
schemes, but HI, should be preferred, both because of its 
better stability condition (table 4) and its ease of com- 
putation. 

As indicated above, a striking feature described by 
figure 5 is the improved computation for the TC condition. 
Because this involves the exact treatment of part of the 
linear contribution, one might anticipate that the exact 
treatment of all the linear terms (EL) might further 
improve the calculated results. That this reasoning is 
incorrect has already been suggested by the deterioration 
d the stability criterion for the leapfrog scheme using the 
EL condition, seen from the total energy in table 4. Since 
Ell shows this feature most strongly of all the schemes, 
we describe on figure 6 the different energy components 
with time for En, At=4.14 hr using both the TC and EL 
conditions; the comparison of TL to T C  is evident from 

figure 5. None of the schemes show improved computation 
using the EL method, but most give results comparable 
to the T@ calculation. Most remarkable is the instability 
that is set up in the Ell scheme using the EL method, a 
result not anticipated from the linear analysis of section 4 
(fig. 4), wherein the stability condition for the EL calcu- 
lation was superior to the TE method. We find here, 
therefore, a purely nonlinear phenomenon, not predictable 
by linearization. However, this observation is not sys- 
tematic with regard to all the schemes and does not appear 
for E,. 

The error in the energy components as a function of At 
is described by figure 7. Here we show both Ell and IO1 
using the TL method for the three times, At=2.07, 4.14, 
and 8.28 hr. We have chosen En and Iol because they are 
the most frequently used schemes in the explicit and 
implicit groups, respectively. Nevertheless, all schemes 
tend to show a similar deterioration of the result With 
increased At, although the higher level implicit schemes 
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FIGURE 6.-Component energies calculated using the leapfrog scheme with A t z 4  hr, showing the difference between the TC (exact non- 
coupled) and EL (exact linear) methods. 

(I,, and 13J have extremely small errors for A t 3 4  hr. 
The failure of the total energy to indicate the errors in 
the components is plainly evident from this figure. An 
interesting feature of the leapfrog scheme that is apparent 
for At=8 is the larger error period, a modulation effect 
caused by the parasitic mode; this phenomenon has bean 
observed and discussed in the past (Baer 1961). An 
indication of the component errors seen on figure 7 may 
be available from linear theory through the phase errors. 
When Atz2,  the phase errors (fig. 3) are almost inde- 
tectable; whereas when At%8 (vAt=2/3), both the leap- 
frog and trapezoidal schemes show sizable phase errors. 
It is interesting to note that for the latter truncation the 
Milne scheme (I,,) has almost no linear phase error and 
correspondingly no nonlinear computational errors. 

Despite the appearance of large errors in the energy 
components, there exist periodic times at  which the 
computed solutions describe the exact solution with 
great accuracy. One might thus be led to the conclusion 
that the numerical integrations will give satisfactory 
results a t  selected times (periodic) for all time, to be 
determined by the highest characteristic mode of oscilla- 
tion (available from linear theory). Such reasoning, in 
analogy with the conclusions drawn from the behavior 
of the total energy only, is based on incomplete information 
and is unfortunately incorrect. The missing information 
are the phase angles of the CY and B waves, both of which 
are time dependent; their time dependence may be 

described by the real part of the stream components #a, 

$0 and we present them as 

A-wave= Re#a (2) 

B-wave 3 Re #0 (t) . 
and (31) 

In figure 8, we show the phase properties for the El, and 
I,,, schemes for the time steps At=4.14, 8.28 hr, using the 
TL method. By comparing the computed values of the 
two wave components as given in (31) to the exact values, 
we see that after 50 days the A-wave is significantly out of 
phase with the exact value. For A t E 8  hr, the phase error 
is almost 180" in both schemes, whereas the error in the 
B-wave is negligible. This error grows with time, and the 
consequent solution therefore becomes less and less 
reliable. Having now established an almost insurmountable 
obstacle to these numerical integration schemes (the 
multistep implicit schemes I,,, I,, do not exhibit discernible 
phase errors for the time steps utilized), we observe that 
no apparent phase errors occur if we use the TC or EL 
condition. The interpretation of this correction must be 
based on the fact that the uncoupled linear terms include 
most of the high-frequency phase properties and therefore 
cannot be successfully truncated. Although many of the 
schemes exhibit the phase characteristics outlined above, 
the implicit matrix scheme (IM) is nonconformist. With 
At=8.28 hr, figure 8 shows the phase properties for both 
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FIGURE 7.-Componeat energies calculated using the Ell and Ial schemes with the TL condition, showing the effect of increasing At .  

the T@ and EL methods of the IM scheme and highlights 
the phase errors,. here primarily in the long period of the 
B-wave. 

Figures 9 and 10 (to lend some credence to generaliza- 
tions from the above observations based only on case CA) 
describe the behavior in time of the energy components 
for data from cases CB and CC, respectively (numerical 
values to be found in table 3). The results described are 
based on the TL method, and the time increments have 
been selected on the basis of the characteristic frequencies 
(table 3). A11 the features that these figures can describe 
are similar to those discussed for case CA. Errors increase 
for increased At, total energy is well conserved whereas 
the component errors are large, a modulation period 
appears in the leapfrog scheme, and the Milne (II3) 
scheme is extremely accurate. We have found that the 
other features discussed in detail for case CA shows 
similar properties for cases CB and CC, and we shall 
consequently not reproduce these results here; we shall 
assert, however, based on figures 9 and 10, that the com- 
putational properties of the different schemes tested and 
discussed in this section are applicable to a wide variety 
of initial conditions. 

6. CONCLUSUON 
The solution of the nonlinear equations that describe 

atmospheric flow (among others) by numerical means is 
today a commonplace event. These equations (given a 
set of initial values) are frequently integrated in time for 
long periods. It is therefore imperative that an integration 
scheme be chosen that is not only stable but also has 
negligible truncation errors so that the true solution is 
not obscured. The development of the "spectral" approach 
allows this solution to be carried out in time alone, 
thereby bypassing the space truncation influence. More- 
over, the reduction of the spectral equations to low-order 
form, with their known solutions, enables US to test 
directly the validity and accuracy of any truncation 
technique. 

Since a wide variety of schemes exist and have been 
applied, it is desirable to f h d  a general method whereby 
such schemes may be systematically presented for testing. 
We have developed such a method based on finite-differ- 
ence polynomial interpolation and havc shown that many 
of the more common schemes-both implicit and explicit- 
are incorporated in our presentation. A number of the 
lower level schemes have been tested on a simple linear 
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FIGURE 8.-Computed and exact values of the wave components Re Ito, Re $8 for the leapfrog, trapezoidal, and matrix (IM) schemes, for 
various At and linear conditions, showing development of phase errors. 

wave equation, and those with the most favorable qualities 
(best stability condition and least truncation) have been 
selected for testing with a low-order nonlinear spectral 
system. Included in this group is an implicit method that 
is not a member of the general set, but is interesting 
because it does not require iteration. 

The low-order system is of particular interest as it 
involves both linear (coupled and uncoupled) and non- 
linear effects. Linear terms may be handled without 
truncation, and a procedure whereby these terms are 
removed from the equations may have some impact on 
the numerical solution of the remaining purely nonlinear 
equations. An indication that the truncation errors are 
modified by such climination is suggested from the solution 
of the linearized low-order equations, both exactly and 
with finite-difference methods. 

The comparison of the truncated solutions to the exact 
ones yields some interesting observations. Whereas it has 
been common to estimate truncation errors of an integra- 
tion from the behavior of conservative integral properties, 
our results indicate that only stability can be discusscd in 
this way. The ainplitudes of functional variables in our 

nonlinear system showed wild deviations (errors) at times 
during the numerical integration, but the conservative 
property (energy) was well conserved; this was caused by 
a cancellation of the individual amplitude errors. One 
must conclude that the conservation of integral con- 
straints in a numerical calculation is not sufficient to 
justify confidence in the results. Furthermore, the satis- 
factory prediction of amplitudes is also not sufficient; one 
must also assure the accurate calculation of Lhe phase 
angles. 

Linear theory seems to yield satisfactory information 
about the computational stability of our nonlinear system, 
as may be seen from the development of the conservative 
property; and the lincar phase errors (for any scheme) are 
indications of errors in the amplitudes of the dependent 
variables. Nonlinear phase errors, which are pronounced 
for the explicit schemes, may be removed by the exact 
consideration of the uncoupled linear terms of the non- 
linear equations; the latter technique also reduces the 
amplitude errors significantly. As might have been antici- 
pated, reduction of the truncation interval, At, will yield 
improved solutions. 
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FIGURE 9.-Component energies calculated using the leapfrog, trapezoidal, and Milne (113) schemes using the TL condition for the two time 
steps At= 1.5, 2.9 hr for case CB (see table 3). 

As a consequence of our calculations, it would be most 
advisable to select a truncation increment (At) sub- 
stantially less than the critical one determined from linear 
analysis, if truncation errors are to be minimized. More- 
over, to avoid phase errors, one must remove any un- 
coupled linear terms from the equations by a linear 
transformation involving the exact solution of such terms. 
Finally, if computation time is not a serious consideration, 
an implicit method should be selected in preference to an 
explicit one. Multistep methods, although they involve 
more parasitic solutions, seem to yield superior results. 
If, for reasons of economy and speed, an explicit scheme 
is chosen, a technique denoted as “restart” that begins a 
new calculation periodically from the mean data at the 
restart time appears to reduce high-frequency amplifying 
parasitic oscillations, but other truncation properties of 
this procedure have not been evaluated. 
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